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THEORY OF THE J131!SYPHON

By B. Szczeniowski

SUMMARY

A new approach to the theory of the mixhg of two currents in an
inJector is presented which deals with an incompressible ideal fluid.

The equations of continuity and of motion of a single flow (assumed
one dimensional}, although well lmown, are demonstrated in order to
facilitate the understanding of the modified theory.

Without advancing any new hypotheses as to the physical nature of
the mixing phencmena, the theory shows new potentklit ies in an appro-
priate shaping of the form of the walJE of the mixing zone so as to
improve the jet-syphon efficiency beyond that heretofore theoretically
predicted. This improvement is shown in spite of the fact that no math-

‘.‘ ematical optimum condi.tions theoretically exist.

A few examples of ways to improve Jet-syphon efficiency are indi-
*. cated. Application of the new theory to the case of a constant-pressure

ejector thrust au@enter is presented in an appendix.

INTRODUCTION

The theory set forth in this report is an attempt to give a new
viewpoint on the problem of the mixing of two currents in an injector
(i.e., Jet syphon), as compared with the theories now existing and
accepted. This new approach is intended to clear up scme ambiguity in
the presentation of the problem in certain tetibooks and papers on
hydraulics in which the interpretation of the law of conservation of
momentum seems to be overshpldfied, in that the external forces (more
particularly, reaction of the channel wall) are disregarded in con-
structing the mathematical expression for the balance of forces and
quantities of motion in the general case of flow with variable pressure
along the mixing zone.

.
The actual phenomena occurring in the channel during the mixing are

very complicated and cannot be explicitly elucidated without the intro-
4 duction of certain physical hypotheses concerning the behavior of the
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microscopic particles of the liquid. It is not intended to give in this %?
paper such a detailed physical explanation of these actual phenomena. A _
few general deductions as to the behavior of the current, its velocity,
pressure, and so forth, may be drawn, however, from the general princi- ti
pies of conservation (of mass, of energy, and of manerrtum),if some addi-
tional abstractive assumptions are made. This is done in the section
‘fIntroductionto New Theory of Jet Syphon.r’ An outline of certain prin-
ciples of hydrodynamics, namely, the equation of continuity and the equa-
tion of motion, is presented first to facilitate the understanding of the
modified theory.

This work was done at the Ecole Poly-techniqW (University of Montreal)
and has be6n made available to the National.Advisory Comittee for Aero-
nautics for publication because of its general interest.
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SYMBOLS

cross-sectional area of channel, sq ft

acceleration, ft/sec2

velocity, ft/sec —

total (kinetic plus pressure) energy of fluid, ft-lb

total energy loss due to shock

external mass force, lb

terrestrial”acceleration, ft/sec2

pump total head, ft

weight

n2 .

static

W1
output ratio; nl = —

WI i-W2

1 - nl for secondsry stresm

pressure, lb/sqfi

radius, ft

channel length, ft

“8“

v

infinitesimal element of channel length

for prhary stream and
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J

m

Th

(m).

w

x

z

Y

vex

()11.e~~

vi

P

T

u.)

thrust , lb

thrust of single (primary) stresm, lb

weight output, lb/see; wl for pr5mary

stresin

potential of mass forces, ft2/sec2

elevation in gravitational field, ft

specific weight, lb/cu f%

external propulsive efficiency

and w2 for secondary

exbernal propulsive efficiency of a single stresin

i~ect or efficiency

de~s~tY3 Y/f3

time, sec

angular velocity, see-1

Dimensionless coefficients:

Vex
E =—

(% )Xo.

.

YI = P1/Po
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ti’

SLibscripts:

o atmospheric conditions

1 initial cross section of mixing zone

2 final cross section of mixing zone
—

3 diffuser exit

Superscripts:

t primary stresm

W secondary stresm

EQUATION OF

The following theory is

CONTINUITY OF A SINGLE FLOW

based on the assumption that the flow is

w

Q
one dimensional, {hat is, that there is only one geometrical dimension,
the length of the flow path. This unique geometrical coordinate is, how-
ever, considered as curvilinear; that is, the ‘taxisitof the flow may be
shaped arbitrarily in the three-dimensional space, provided the flow vein
is sufficiently fine to consider the pressure and the velocity uniform in
the whole arbitrarily chosen cross section of the vein. Such an approach
is, of course, not entirely exact, but it has @ven fully satisfactory
results in dealing with the thermodynamic problems of stationary nozzles
and diffusers.

The other assumption made herein is that the fluid is ideal, that
is, nonviscous and involving no friction at the channel walls.

Consider a certain flow vein whose axis is arbitrarily shaped in
space (fig. 1). Let its cross section A be variable with the length s
of the flow path and with time. Cutting this vein at any point whatscwer,
perpendicularly to the axis, with two planes A andB which are at an infi-
nitely small distance ds from each other and supposing that in plane A d
the cross section is A; the pressure, P; the velocity, c; and the den- —
sity, p; one has in the B plaue:

w
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.

all
Cross section: A + — *

as

Pressure: p+*ds
as

Velocity: c+~ds

Density: **
‘+as

where the cross section is measured in squsre feet; the presstie, in
pounds per square foot; and the velocity, in feet per second; and the
density is

P = 7/%

where y, in pounds per cxibicfoot, is the specific weight; and
2 is the terrestrial acceleration.i3= 32.lT4ft/sec

During the infinitely smdlt~ interval & the amount PAC dT
of the mass of
tion A, while

fluid enters the vein element ds through cross sec-
another amount of mass

leaves the vein element through the other cross section B.

On the other hand, during the same time interval d7, the mass of
the vein

one has,
flow, at

sector ds has ticreased from PA de to

therefore, arrived, under the condition of the continuity of
the eq~ity

*
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as the given amount of mass cannot change.

Neglecting the infinitely small quantities of the second and third
order and introducing the

there is obtained

definition of velocity

c = ds/dT

.

~(Ap) +:(ffLcP} =0 (1}
dT CM

which is the mathematical form of the principle of continuity of flow
and is called the equation of continuity.

Particular cases maybe easily deduced from equation (1). For
instance, if the fluid is inccnnpressible,p = Constant, and therefore

$$+$(Ac) =0

Another particular case occurs when the channel cross section is
constant, that is, when A = Constant, and therefore

If, at the
&/as =0;
at a given

&r+a
hT

~(cp) = o

sane the, the fluid is incompressible, one obtains
that is, the velocity c is only a function of time (i.e.,
moment it is constant through the whole channel).

A further
independent of

possible particular case is the steady flow, which is
time; that is,

-.

-.
17

f

~(AcP) ‘&(AcP) = O
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u

Aocoyo
ACP = ~ = Constant = ~

7

(2)

If, in addition, the fluid is

ahd one gets

Ac =

incompressible,

Constant = Aoco

then 7 = Constant = 709

(2a)

EQUATION OF MOI!IONFOR A SINGLE FIOW

The principle of conservation of momentum (i.e., of quantity of
motion) resulting frcm Newton’s bw which states that the force equals
the product of mass and acceleration enables one to obtain the equation
of motion.

The forces acting on sector ds of the vein are as follows:

(1) On the one hsnd, the resultant of pressure forces exetied on
cross section A and on the lateral surface; this resultant force simply
eqmls the product of the pressure p and of the pro~ection of cross
section A and the vein lateral surface on the plane of cross section B;
that iS ,

(2) @ the other hand, one has, similarly,

(p+?&)(A+%&)
and the resultant force in the positive direction of s is

‘k+%+(’’w(A+*dshA*ds
Apart frcanthat, the external force F, called mass force, may also

act on the sector ds. This force is bound with the mass of fluid and
it always possesses a certain potential X such that the component of
mass force in any direction n, reckoned per the unit of mass, equals the
partial derivative of X in this direction, that is, &/an. One, there-
fore, has in the direction of motion s:
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and the resultant force till be

hdFs-AZds ?P=&did s- AXds

The acceleration of the element ds in the direction of motion is

dc! &ds ~a= —= ——. =c=c ac+&
dT ~S dT aT saT

and the mass of the element is PA de; therefore, the equation of motion
(also called Bernoulli’s equation) will be

dE (=pAdsc

or

ax lap=

Z-FZ c
For steady (i.e., stationary) flow

& d~
as

-$dp

and, after integration,

x-

Among the mass forces,
actually occur:

(a) Gravitational

ac+ac

as z
there is obtained

=cdc

s?

(3)

z?-

(4)

the foll.owingthree may, above all others,

force
-—

(b) Centrifugal force

(c) Shock force

All these are “external” forces, in contrast with possible “internal”
mass forces (e.g., viscosity).



T
NACA TN 3385 9

4
The gravitational force is caused by the gravitational field of the

earth and it actusUy occurs in heavy, incompressible liquids (e.g.~
water). Its presence is independent of the character of motion.

*
The centrifugal force may occur only in rotational motion or in a

combination of rotatIonal and progressive motions. In purely progressive
motion centrifugal force does not exist, as here the radial acceleration
(of the Coriolis type) is nil.

The appearance of shock forces in any actual hydraulic or aerody-
namic device is, in general, unavoidable. When the fluid (either gas or
liquid) stresm strikes a rigid wall, either fixed or in motion, the shock
force appears in the form of a reaction of the wall, and this is, of
course, m external force, relative to the stream. The ssme reaction
may occur if the liquid stresm strikes another liquid stream, which wiIl
produce a reaction force external to the former liquid stream.

As is seen, the general equation of motion (eq. (3)) is independent
of both cross section A and its changes in space and time, provided,
as has already been pointed out, the flow vein is sufficiently thin.

Equation (k) is integrable if the hw of variation of density with
pressure is known and given. Insofar as gases sre concerned, these varia-

#. tions depend on pressure and temperature, and therefore the character of
thermodynamic evolution (i.e., process] must be determined. In the case
of an

% ately

where

incompressible fluid, 7 = const&lt = 7., equation (4) is tiedi.

integrable, giving

C2
x ;P-~-— = constant

o
(5)

the value of the constant is to be defined frcm the initial, final,
or boundary conditions.

The following exsmples of mass forces may be cited:

(a) Gravitational; it acts inthe direction of the z-axis (fig. 2)
and is shply

d?= -(P.A ds)g

where the negative sign means that the force is directed down. It follows
J that x = -gz; thus, for an incompressible fluid,

C2 Po 2
z+~+—= constant =2.+—+=

70 a 70 a
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(b) Centrifugal; it acts in the direction of the radius r and is
propotiional to the centrifugal acceleration

Y
—

where @ = 2m/60
of revolutions per

b

s, %=U.)

is the angular velocity, n designating the nmnber
minute. Thus the mass force becomes

dF= (pAds)a

that is,

U%2 Jr??lz-r2
x=—=—

2 1,800

and therefore

Y&F r2 - ~ C2 . ~omtmt

1,8CQ 70-Z

This equation is lmown and appliedto rotating, dynamically acting
machines (turbines,preps, etc.).

(c) As for
between the two
object of study
lowing section.

the shock force, the case of the exchange of shocks
flowing liquids, as occurs in a jet syphon, is the main
of this paper, and it is discussed in detail in the fol-

IITCRODUCTIONT.ONEW=QRY OF JEl!SYPHON

The mixing of the two currents in an injector (i.e., jet syphon) is
a typical example of hydrodynamic shock provided the velocities of the
two currents are initially different, that is, provided they are different

—

at the first moment of the meeting of the two currents. The following
computation is restricted to the case of an incompressible fluid in both
currents.

Let the exit of the internal channel I be placed at x = o (fig. 3),
where its cross-sectional area is ~’ and the velocity is cl’. At the .,

same cross section the external channel E has a cross-sectional area ~*’ ‘-

and the velocity of the flowing fluid is C1’l# cl’. Both fluids are con- ‘.

sidered to be incompressible and of the ssme specific weight 7..
.
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As was stated in the “Introduction,”a few abstractive, but logically
admissible, assumptions must be made in order to make it possible to draw
conclusions from the three general principles of conservation. These
assumptions are as follows:

(1) The two currents are considered to atomize, one into the other,
and to intermingle so perfectly that the exchange of shocks is not only
between the surfaces but also between the two whole masses.

(2) Obviously, the “external!’shock force F“ acting on the second-
ary fluid, being merely the action of the primary fluid, is always in
equilibrium with the “external~*shock force F1 acting on the primary
fluid, which is merely the action of the secondary fluid; thus, F“ = -F*.

(3) In any given cross section, for example, A, at distance x, the
pressure throughout the cross section, that is, the pressure p’ of the
primary fluid, equals the pressure p“ of the secondary fluid, as it would
be senseless to assume two different pressures in two fluids which are
perfectly mingled one with the other. However, the corresponding veloci-
ties Ct and c“ are different, until aKL possible shocks have been
exchanged. This occurs for the first time at cross section A2 at dis-
tance Z, where c! and c“ become ecyxal(e.g., C2).

Of course, A = At + A“ and, according to the law of continuity,
the weight outputs will be W1 and W2, defined as follows:

According to the section “Equation of Motion for a Single Flowj” the
mass force is

that is>

f

ldF -E C2
~ T- 70-Z

= Constant

J

provided that, in general, the cross-sectional area A is variable with
the channel length x.

4
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Applying this last equation consecutively
gets

NACA TN 3385

to the two currents, one

1 J(3F! p’ (C’)2—- —- —= constant
~ A’ 70 ~

DifferentIating and introducing A‘ = = and A“ = ~, as well
70Ct 70C

as the condition p“ = p’ = p, give

W2 dp
F“=-Y+~dc”

70 c

As, however, Ft’= -F’, this reduces to

One of the simplest solutions of this equation
particular case of constant pressure throughout the

P = Constant = Po ●
In this case

W dc’ + W2 dctt= O
1

0 (6)

W,c’ + w# = cc)~tati = Wlcl’ + w@~”
L

The final velocity is here

C2°
.=c2~ = C2 =

Wlcl’ + W2C1°
WI + W2

is obtained in the
channel, that iS,

(7)

(8)
‘.

b
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Introducing the

the following
area:

conditions of centinuity, that is,

wl
A’=—

yocf

A“ = ~
yoc

A = At + A“

obtained for the channel cross-sectionalexpression is

( ( }w~cl’ + w2cl”)w1 - @ 2 I- W2
A= (9)

170C’ (wlc~ J‘ + W2C1”) - w~c’

tierefran it maybe deduced that A diminishes with the diminishing
velocity Ct &d attains a minimmn value when c’ takes its final-value
given by equation (8). The form of the channel may be deduced frcunequa-

-. tion (9) only if an additional assumption Is made as to the variatiop of
c~ with the charnel
that c’ dhinishes

“< duct entry, mqnely,

lengbh. Of course, the simplest assumption will be
linearly with the increasing distance x from the

c’ =cl’ - ( )‘2 cl’ - %“ ~
( )W1+W22

C’t= c”+ %(%’ - cl”)
1 ‘~x

where Z is the total length of the duct.

During the mixing of two currents of initially different speeds, a
certain loss of energy occurs.because of shocks which do not contribute
to the exchange of momentum in the direction of flow. These shocks do
certain work which finally degenerates into heat (increase of temperature),
the molecu3ar motion induced by these shocks beccaningdisordered. There-

-t fore, the sum of the kinetic and potential energies of the two fluids
must gradually diminish. This loss may be expressed as

4
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AE=

[

‘1 2+W2
()~ cl’ #i’)2 + (“1 + ‘2 ~ -)]

IA(CI)2 - &’)2 - (W1+%)%
Thus, the total energy loss in the in~ector after the velocity becomes
uniform and equal in the two currents is

(lo)

The total energy of the fluid (kinetic energy plus pressure energy)
is

(‘1 - Po)
% = %(Cl’)* + %(cl”)2 + L% + W2) 70

Thus, the efficiency of’the i~ector

qi=l -

provided the flow and the fluids are
tion or other losses are involved.

(U)

will be
—

‘tot (12) ,

‘tOt

perfect, that is, provided no fric-

In the particular case of
as quoted above; p = ConSt@

constant pressure
= PO> and

W1W2cl‘ - cl”)2

ag(wl + W2 )

E
wl(cl’)2 + ‘2(%” )2

tot = 2E!

throughout the channel, ——.-.—

—

.—

L‘

b



NACA TN 3385 l?

The other particular case is a tube of constant cross section; that
is,

At +A” = ‘1
~

In this case equation
unknown velocities, for

W2
—=A =Constant=Ao=~+~+ yoc” Yoc~’ 70C1

(6) becomes easily integrable, as one of the two

_le ~ c“, may be eliminated. One gets:

(gg_<Clt

wherefrcan

c“ =

( )Wlcl” + Wzct c’ - wlc~’cf

(%+ W)q%”

( “ + W2C1‘‘lcl )

‘*)(p‘PI)‘WI(C’- cd+w4c”-cd ‘0

L

( “ + W2C1’g wlc~ )

[
70 I(W1

)1) (w:-‘~ c~cfc~c~’c’“ + W*Cl’ cl -

g (wIcl“ + W2C1’)1 ) 1
“ + W2C1’ cl - w c ~c 1’

“Wlcl 11 1

2
7owlw2C1’Cl’’(Cl‘ - cl”

= 21 “+ )
‘2

(

2
g Wlcl” + w2cl’

)

It may be easily demonstrated that the pressure increases steadily
with decreasing C1, that is, with the chmnel len@h, attaining a maxi-

.J mum value at the final moment, when c’ = c“ = C2, that is, at the end
of the duct. At the same moment, assuming pl = po,

4
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‘tot =
1(cf)2+W2(C1’)2(q’ - q? f

(
2

2g Wlcl” + w2c~’
)

*
.—

.

(w, + %)[%w2(cl’ - ci’)2 + (w> + “2%’cl’d%’ccVi =

[ 1W)2+W2(C1”)2 (%%” + W2=1’)2

It maybe easily proved that the efficiency is in this case generally
lower than that in the case of the constant-pressure injector as studied
above.

St’UDYC?FGENERAL CASE

Consider again the general case, that is, the case in which the duct
cross section varies arbitrarily with its length. In this case the pres-
sure will also vary along the duct and its final value, at the duct end,
will be, in general, different frcm the initial value. Thus, to get the
desirable final value of the pressure, the usual nozzle (or the usual
diffuser, according to whether p2 is greater or less than the desired

value) should be applied.

It shouldbe first remembered that the equation of motion appl@g
to the general case has already been given as (eq. (6))

On the other hand, one has the following conditions of continuity of flow:

W2
A“ =—~ocl!

A=A*+A” 1

(13)



T
NACATN 3385

where the total cross-sectional area of the duct A is arbitrarily
shaped along the duct length (fig. 4):

A = (p(x)

Putting equation (13) into equation (6) and ruminating A“, the
following expression is obtained:

2
W2

dp - aA
gA(A - Al)2

which is not integrable until an additional hypothesis is

= o

made as to

17

changes of ct (i.e., of A:) with the duct length. However, the pro-
cedure may be modified as folJ-ows: Let the decision as to possible
changes of c’ with the duct len@h be deferred until the mathematical
solution of equation (6) is found (it may be next assumed that, for
instance, c* diminishes linearly tith the increasing duct length x),
while it is assumed first that the following relation

= *(C’)A=—
. 70

.

is arbitrarily given instead of A = q(x) ● Denoting
d$
—=v~, it is

found that
dcr

d

A“ =A
-A’=%(*-3)

W2Ct
Cf’= —

Cqr - w
1

dc” =- 1w2p)%+q
( 2
C’* - WI

)

Substituting into equation (6) gives

dc‘

[

dp+lw [ 1W22 (c’)2w’ + W1 1dci = O
70 & 1-

( )
2

C’v - w
1

(14)
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which is integrable, provided the function..~(c’) is given. There is b-
obtained

*(P -
0 pl)+il::fl-w’;fl;(:v:131}*=” (15) “

where a is an auxiliary variable used only for integration.

At the end of
is first achieved,

the
one

duct, where the total eqmlization of velocities
sho~d have:

—

c“ = c’ = C’f = c’” = c’

W+w

*(C’) =70%=1-2
c’

It might be easily shown that both the particular

(15a)it%)=”

cases as quoted
in the section “introduction to New Theory of Jet Syphon” (p = Constant
and A= Constant) may be deduced frcm equation (14) or (15).

In designing an injector, the aim is to have the greatest possible

(
efficiency for any given initial conditions Wl, w’> Clt, and Cl”).

The form of the function w(ct) should, therefore, be so chosen as to
have the greatest possible vslue of

d [ 1
Wp’ u%’(a) + W1

2 c’
c’-’ ‘1 -

%’ 1[@(a)- wl]2 %

vi =
w~ 2 w-’ 2

()‘ cl’W+w ()
Clft

1
+W1+W2

which means that in the numerator

—

.

(16)

‘*J
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J=c22-2
J

‘2

c1‘
[

‘1 - I~:[a%qa)+q] dfJj

[46) - ..]2 m

19

(17)

the function y should be so chosen as to have J attaining a maxinuuu.

In order to solve this problem correctly, the calculus of variations
should be applied. The following discussion is based on the theory as
given in reference 1 (ch. X2DLIV,pp. 545-600).

The general problem of the calculus of variations is as foLLows:
A form of the function f(x) is lookd for such that

J=
J

‘1
F(x,y,y’) dx

‘o

is a msximm, where y = f(x) and y! =&, X. and

stant Mnits of integration. Such amaximmn does not
are several conditions for the existence of a maximum
first of these is that the following equation (called
must be fulfilled:

In the present specific

2
C2 =

case the expressions

J’2
C2

()

2
ada+ C1*

cl’

the integral

xl being two con-

always exist. There,
(or minimm). The
Ner’s equt ion)

o

Y = f(x) = *(a)

F=
w2*(x2yV + WI

x++-

Y(w - %)2
2“

may be substituted into Ner’s equation. The final result

●
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w-i-w
*(CL)= + - ii

is obviously trivial because it requires that c1i = cl”. ●

The conclusion is that no extremum exists in the present specific
case and therefore no form of the function ~ may be found giving such
an extremum. El(hereis no doubt, however, that a certain form of ~ may

—

give a higher value of efficiency vi than sane other form. Thus, the

alternative is to try several possible mathems.ticalforms of ~. These
forms may be chosen so as to meet the sin@est mathematical operations
and yet to have a certain degree of generality by introducing a few

—

arbitrary constants, which could next be so chosen as to attain the high-
est value of qi possible in the specific case.

One of the possible forms

V(a) =

where M$o. Another is

W(a) = 70A1 +

may be, for instance

70(% - %) cl, - ~

c,‘ - CQ ( )
L 6

where ~ = @l and p$ 1. Furthermore, it maybe possible that

where a and b are constants.

One more possible form, which

V(a)

=a - ba

is as follows,

= a+: (18)

will be studied more thoroughly below, as it seems to be relatively very
sln@e and to give satisfactory results. It must be strongly emphasized
here that there is no proof whatsoever that the form chosen is the best
possible. On the contrary, it is very probable that other forms of ~
may be found, which, although probably more involved mathematically, will
give still higher values of efficiency for the injector.

b
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SFUDY OF SPECIFIC FORM OF DUG2 AS ASSUMED BY EQUATION (18)

Assuming the specific duct form (eq. (18))

V(a) b=a+Z

means that

A *(C*) &a+~=— =
70 70() c

Therefore,

()‘l:w2 .1a+&A1=—
7oy 70C1” 7~ Clt

w i-w

()12_la+b=-
‘2 Y&2 70 T

2

In addition, it is assumed that

.2

●

where v is an arbitrary
have the highest value of
stsmces. Thus:

constant whose
the efficiency

C2 =

value should be so chosen as
qi under the given circum-

a

.— .—

(v‘lcl”+W2C11)

)(~w2(cl’ - cl” Wlcl” + W2CJ)
a=

[(Cl’cl” v ‘lcl )(
“+wc’-21 ‘1 + W2)C1”1

to
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b=

substituting the
greater simplicity in

(P - l)(W1+ w2)(wlcl”+ w2cl’)

p(wlcl”
+ ‘2C1’) -(W1 + ‘2)C1°

above values into equation (17) and assuming, for
writing, that

‘1

W1 + Wp
=n 1

W2
=
‘2 =l-nl

wl + W2

cl”
~
1

one gets, after integration,

-%—~
(%’) %2(’-%)2(1-”)’1~(l-nl)(l- .+#-.(l -..l)%] -L1.&~(%++l)+

. .

0’2 ‘t [%(1-~)(1-d)q(3q-l)U+(1-q)(3q-&)]-
%’(1 - U&- .)a(n.p+ 1- n.J

Z3U(IP1-L IJ4%++)+ 2(1-I LJ3(W+ 1-%)%
(%.:.-.)1$

,i=4f-
n+

(11 - ‘1)a2

Now the value of p giving the highest value of Vi should be

found. Equation (20) is of the form

.

—
●

L.

(29)

(20)
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where al, @ and a3 are constants. Thus

dqi 2a3

r=-: ~3
-—

~=p+~

The condition dvi— = O till give Ke =-

()

d~i a24
3, — = —, and
a2 du2 e k33

(n.)e = % - (’;/’%)= Thus amsximumof qiwille!xisto~if

d2qi
—< O,thatis, if a3<0
@2

Pe c o would have no physical

and, consequently, a2 > 0, because

sense.

The correct mathematical analysis of the coefficients a2
and a

3
is rather clifficult; numerical testing leads, however, to the highly
probable conclusion that a3 may never be negative, that is, qi nay

never have a mathematical midnlum, which means that it tends mathematically
to an infinite positive value at v = O. One, therefore, should look for
the highest value of qi, in the whole range of
of p, which is not a mathematical maximwn.

It should be noticed first that K cannot
a limit

physically possible values

drop to zero, but it has

( )‘1 + ‘2 cl”

‘Z=wc”
11 + ‘2cl’

at which the duct cross-sectional area
except for initial and final values, if

is not fulfilled in addition. Thus, it

and, therefore,

of ~.

(21)
~a+l-<

will become infinitely large,
the trivial condition cl” = cl’

must be assumed that

the highest value of qi corresponds to this limit value
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SUbstituting Ill as defined by equation (21) into eqyation (20),

the limit value of the efficiency is found:

2(1 - n1)2
(10ge n~a + 1

1
)(+~3nl- 2) + 2n1(l - nl)a

(n~)
- nl

=
z

~2Fl + (’--‘M

(22)

lt may be easily proved, for the sake of checking, that, for O S nl < 1,

Cl’ ~ O, and Cltf > 0, which conditions are physically obvious, the value

is always (ql)1 s 1. Substituting, nsmely, x =

condition
~cr +: - ~> gives the

1(x-1) [(3- 2nJx-l >Io%x

2(1 - nl)~ -

To prove that this condition is fulfilled for O ~ x ~ - , that is,
1 - n.

for O S a S ~, it is sufficient to take the first two deriv~tives of the
two sides of the inequality cited above. This inequality becomes an
eqmlit y only for x = 1.

Of course, the exheme case as defined by equations (21) and (22)
is not actually applicable; some deviation of numerical values must,
therefore, be applied and qi will become less than (~i)Z. ~ order,

however, to have comparative figures on hand, the theoretical case of
equation (22) will be studied numerically below, it being compared with
the value

()vi r as applied in the usual routine now (ref. 2),

()?l~ =
r

It lllL%ybe

) =El +(1- ‘1)”12(3]
f iif)2] ‘1‘(’ - ‘JF

easily proved that always

It is sufficient, for instance, to stibstittie 1 = X, which

leads to the condition
ila+l-nl

f

e“

.

---- -

w
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“(x-l)(3x-
1, > loge x

2X?

Taking the two first derivatives of this inequality, one arrives at the
conclusion that x Z 1, which means that cl* > cl”. ‘IYKLsassumption was

made at the very beginning and remains, of course, vakLd; therefore, the .

asswtion t~t (?i)Z Z (vi)r iS proved, except for clt = Cl”; that ,

is, x = 1 when (vi), = (vi);

NUMERICAL CCMNIL%TION OF

The procedure for the nmerical

EQUATICNS (22) AND (23)

calculation of equations (22) and
(23) is as follows: Take first the routine formula for efficiency qi .()

The numerical values of ()&
are given in table I and platted againstr

nl~ for different constant v&es of c, in figure 5.

As is seen, (7,) wssest~o@ afi~value, the fo~~for

. which is easily obtai~ble by differerrtiationof equation (23):

for

()
a

nl .—

e 1+13

Numerical values of ()~i
are given in table II.

‘kin

Turning now to equation (22), it should be stated that for very
~ the usual calculation based on form (22) is notsmall values of n

sufficiently exact. It is, therefore, better to develop the logarithm
as follows:

.
10ge[l-~~-~)’d=(l-“)nl+*(l-”)2<+;(1-u)3nr+“ “ “

which gives
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a

#+ fa-u)(l +.+2)~+ *(1. #xl+za+3F~+41 - ~)3(1+ ~ + &#!)n~ + xl - .3)4(1+ 40 + 10J%14 + . . .

(n,~ -
—

. . (24)

The

against

t?+(l-c?)y +-

numerical Wues of (Vi)1 are given in table III and plotted

nl, for–different constant values of a, in figure 6.

DUC2 FURM

In order to deteimine the duct form, an additional hypothesis as to
changes -of c’ with the duct len@h must be made. As has already been
pointed out .inthe section “StUdy of General Case,‘fa possible assumption
is that cl ,diminishes linearly with the increasing duct length x (see
fig. 4). Such an assumption seems to be the simplest and, at the same
time, logical enough. Mathematically, it is equivalent to

c2-%’x+c,
c’=—

1 (25)
2

.

In the particular case as defined by equation (18) this leads to:
.

A=
ac’ + b

yoc‘

(ac 2
- C1’)X + (acl’ + b)2

=

[To (’=2- 1
C1’)x + C1’z

(IJw~c~‘t+wc*21 )[
“+WC

) (‘lcl 2 1’ z - ‘2 cl’=
- C1’’)x]

[( ) [( )( )1}
70C1’CI° V Wlcl” + W2C1’ 2 - v wlcl*’+ wzc~~ - WI + W2 C1llx

where p must, of course, be chosen a little
defined by equation (21), but close to it, in
est possible efficiency. The length Z will
practical considerations, as no theory may be
nection. The aim is, of course, the thorough

J ‘(26)

larger than the limit value
order to maintain the high- U
be evaluated according to
adxanced here in this con-
mixing with minhum losses +
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and the obtaining of ccmplete uniformization of velocity at (or before)
the final cross section.

As for the cross-sectional area A, it
whatsoever. If a circular cross section is

beD=
i
4; A.

In the limit case p =
that is,

‘=%=

T’heportion I of the

IJzjthe results

~ = Constant =

C2 = cl” = cl’

may be assmed in any form
assumed, the diameter will

become, of course, trivial;

(W1 + W2 )

duct lying between

Ct
1

cross sections A, and ~

cannot be regarded, in general, as a whole unit, either in the &e of an
inJector or in other cases. The reason is that the “final” pressure p2

is, in general, not eq~l to pl. Neither does it equal the pressure p.
“

of the surroundings. In the case of an injector used for pumping purposes,
it maybe assumed that pl = PO) w~le the f= press~e sho~d be raised

. as high as possible, for example, to p3, by applying the feasible mini-

mum
C3

of the final velocity. This maybe done only by adding a diffuser

extending from A2 to As.

The other possible case is a thrust producer? Here not Only pl = P.

but also p3 = p. should

In the general case,

J=

be assmed.

according to equation (16),

[ 1
qi(c1t)2nl+(l - n~)a2

and, according to equations (15a) and (17):

Pa - P1 =P2-PO= gt - c:)

wherefrom

Pa
{[

-P1=P2 -PO=* ninl+(l
}

- n~)#](c~ )2 - c: (27)

.. . .
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In the additional diffuser (see fig. 7) the pressure is brought back to -$
po, that is, P3 = PO* Thus

(
70

P3 -P2=-P2-
‘[ [

~o)=z C22 -
)]( )}vi~+(l-nla2 C112

But, according to Bernoulli’s law, if friction and other losses are

Thus:

disregarded,

‘3 =

=

‘3 - ‘2 + C32 C22 ~—-— =
70 2g 2g

(28)

In the particular case as defined by equation (18), the value

Cz=.p-::a)%]

should be entered into equation (27), and the value of q as defined

by eqyations (19) &d (20) shouldbe entered into equatio~ (28).

The area of the final cross section of the diffuser is,

w +W
1 2= w~ + W2

A3=_

‘0=’ Yo%’~’

The particular case of an ejector thrust augmenter with

obviously,

(29)

constant-
pressure.&r.ing zone is stutied more thoro~y ~ the appen~~

Ecole Polytechnique (Wiversity of Montreal),
Montreal, Quebec, Canada, January 13, 1949.
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APPENDIX

29

THEORY (2??“COIW%NU!T-PRISSURE”EJECTOR THRUSL’AUGMEWER

In the coqputation developed in the main text the case of an injector
has been treated almost exclusively, with the aim of obtaining the dynsmic
compression. The ultimate goal has been to get the largest possible total
pressure (i.e., a sum of static pressure and velocity head). The case of
an ejector thrust augmenter is different in that the ultimate goal is to
get the largest possible thrust, depending directly on momentum, under
given initial and final conditions. This case is briefly investigated
theoretically below.

Although the definition of efficiency is a little different in this
case, it remains inthately related to the final momentum of the mixture
leaving the ejector; therefore, all the general remsrks concerning the
ejector (mixing zone) throughout the paper remain valid. However, as the
investigation of the most general.case would be rather involved, it seems
more practical to investigate first the particular case of the ejector,
that is, of the mixing zone, at constant pressure. Therefore formulas (8)
and (9), applying to the mixing zone, will remain valid.

a

Obviously, if the given initial conditions po,co’ for the primary
stresm and po,co” for the secondary stream sre applied directly at the

●

ejector exit, ttit is, if pl = pot ‘Po”) cl’ = co’) ~d cl” = co”j

and if, in addition, p. = pl = p2 (or atmospheric pressure, thus no

diffuser or nozzle at station 2), there is no thrust augmentation whatso-
ever, because the mcanentumremains unchanged. It therefore follows that
the given initial conditions should be first subject to appropriate changes
if any thrust augmentation is to be obtained with a constant-pressure ejec-
tor. These changes may be either a prior acceleration (by nozzles) or
deceleration (by diffusers) before the two currents enter the ejector,
with the condition pl’ = PI” = pl. Of course, in such a case a diffuser

(or nozzle) Wst be applied domstresm of the ejector, in order to estab-
lish the desired final pressure p~ = po.

For the given initial conditions pot,co’ and po’’,co” and the
final pressure po, there exists a certain value of pl = p2 yielding a

maximum of thrust, which may exceed that obtained with the primary stream
alone snd without ejector. Of course, these

and Th depend on the mass-flow ratio, that

In order to define the problem further,
in figure 8j in which the boundary losses in
diffuser are ~sregarded.

optimal values of PI
.-
W-1

is, on nl = L
WI + W2”

assume the systetias shown
the ejector and the exit
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P.

co

%

70

H

The given values are:

atmospheric pressure, lb/sq f%

velocity of travel, ft/sec

W1
mass-flow ratioy W+w12

specific gravity, lb/cu ft

actual head produced by pump, ft

The value of cl’ is to be found for (Th)mx; thus values of PI

and cl” will thereby be defined.

The following formulas follow:

(H lpo -=-—
7~ p,) + *[(%,)2 - (%’Y] =*[(co,f - (%’’)2]

I 2
cl” = co

Wc’+wc”
11 21

C2 ‘“ WI + W2

c, ={-

Th
( )(

.:W +W2 C3 -CO)
gl

The (external)propulsive efficiency is

co(Th)
vex=— WIH

.

4

.

.
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If the ejector
the thrust

were not applied, the primary stream alone would produce

g %(JZ=F-co)=*.$-,9’-%(PO- m) - co](m). = ~

Introducing the dimensionless factors

the following

.



(Th,o ‘I&(/- - a.)

%x =

=

2- C7’’+ co’()1 + [’”.’+P- WFF!12 -“o

(y ~-”. )

J’

As is seen, ~ is a

and al’; logically,

function

they are

of four

limited

different factors, nl, Co, 1,

as follows:

~1

~.

understood

.

.

.
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and therefore

33

h2- U1’2+U02+120()
In order to determine the influence of these four fact”ors,the for-

mula for ~ should be exsmined first with respect to each of them sepa-
rately. Me condition d~dnl = O leads to

It may be shown

Lnl-@ =

()nl=Oe
that for, %=0

(%’-,lGm)w>l ,f
.O(m- ..)

(except for p = p. i.e.,
1 ()

fi2= ~1,2-

cnl=~ = 1“ This is a maxhum because, for

the secondary mass flow should be as large

aoa), or for

~=1, ~.

as possible.

if = O where

1. Therefore,

. The condition @ Ida,‘ = O does not lead to any extremal values,

simply yielding 1 = 0; &ch does not @ose any condition upon ~ff~.

It may be shown that, in general, for A = 0,

(~ ) =1x?@
It may also be shown that, for pl = po,

k = 1

()
2a.

~ =
ex

3C=1 D’+c
1 0



*

as well as that, for nl = 0,

()~ =
‘x nl=O

Furthermore, ~ may become very high

efficiency being
(greater than 1)
figure 9.

Finally, it
and 0<~<1=

lWcA m 3385

for SIWLU.

f~l if ~:o

values of a. (the

t

low, however), whereas it attains certain maximum value
at a definite value of A. The picture is as shown in

may be shown, in general, that C > 1 for O < m < 1 .

If the ejector is not applied, then m = 1, ~=1, cod,

‘d (Vex). = ~ ~“~ ~ “ Therefore, the ratio of the increase in effi-

1 0
ciency by an ejector is

—

v
e ex=-

.

(%x)

.-(i-- .J,

— ..
.

—

If the values of IJl~ and Ao, applied tithout the ejector,
o

to be changed (e.g., A wiLl increase) while a. remains the

are going

same, then

.
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9

In the applications of a centrifugal pump to the dynamic propulsion,
the requirement of a reasonable efficiency imposes a rather large mass
flow while the head should be kept small. This results in huge tubing
diameters. In order to improve this situation, an ejector thrust aug-
menter may be ap@ied in such a manner as to keep the efficiency unchanged,
while the pump head A is increased with subse~ent reduction in mass
flow, if the power supply remains unchanged. The problem may thus be
defined as foKLows: For the given 6~ = 1, increase A and change fi so
as to maintain a sufficiently high value of thrust, while the velocity of
travel co remains unchanged.

The condition ~! = 1 leads to

(l-x)-

[

EW-+‘n.Jqo‘ + “o)[(’-%)”. - %“l$k+“)$’”%’)’-‘~ - ‘@q4(1- nl)(ulo’+ u

(.%’+ ..)’[4-~’).j -q’ -q., ‘.O+..2
0

p%f].’ -q, -Lj& + UJ&:]’ - .$]..]

.,wherefromthe functional dependence of n on h may be found for assumed
. numerical.values of nl, al ‘, and Co. The thrust wilJ.remain constant

o
because the power sup@y remains the ssme; that is, wL2gHo = w12@.

v Therefore,

.

Let p. =
*

foot, co = 17

“

W1A2
=

(2’10 %0 - aoz)
.<
WI A02

o

2,120 pounds per sqwe foot, y. = 62.5

feet per second, E. = 15 feet, flo= 1

pounds per cubic

and
3 = 0.25.
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Then

end,

NACATN 3385

~o = 0.320, To = 0.662, ale’ = 0.Y35, CIO’ = 34.54 feet per sec. ,

W2 = 3W1, and

.

1 -Yt=
o.01872x6 + 0.05944A4+ 0.0767%2 - 0.04483

0.438 - 002%2

The reduction of the exhaust

n) + 0.1024

0.735

tube till be in proportion

where

wj- 1.2
q=F-

Some calculated values of 1 - z and 5 for given values of X2
are presented in the following table:

~2 0.438 0.5 0.6 0.7 0.8 0.9 1.0 1.1

1 -Y( o 0.0342 O.ogo o.169 0.269 0.404 0.585 0.836

/‘1 Wlo 1 0.876 o.~o 0.626 0.5475 o.486~ 0.438 0.39!3

al’/%o’ 1 1.086 1.ZLO 1.*O 1.472 1.613 L 766 1.g41

5 1 0.898 0.776 0.684 0.610 0;549 0.498 0.4527,

For the same assumptions but with nl = 0.2,

.

1 -II=
o.ol124# -1-o.05m4+ o.oT@x2 - 0.04483

0.438 - 0.2X2
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following values of ~2:
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I~2 I0.438I0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.539

0.398

1.2

0.713

O.m

1.3

0.939

0.3368

o“.12890.2002o.28g61-X o 0.0244 OJIUO

0.438

1=++‘4WA2 1 0.876

/%
a=fall 1*O*

8 1 0.92

0.626 o.34’j’3O.wo.’i3o

=T=l=1.1* L668 1.795 Lg30 2.080

0.4350.690 o.~9 I0.5590.782 0.471 0.40250.5123

Finally, for nl = 0.4,

1 -l’c=
0.0599A6 + o.068gX4 + o.061A2 - 0.04483

0.438 - 0.4A2

for the following values of A2:

h2 0.438 o.~ 0.6 0=7 0.8 0.85

1 -Jc o 0.0436 0.1489 0.3302 0.667 0.955

lb
W1 w ‘1 0.876 0.730 0.626 0.5475 0.5150

al’/~~’ 1 1.093 La 1.447 1.704 1.877

6 1 0.895 0.7625 0.658 0.566 0.524

The above numerical results are presetied graphically in fig-
ures 10(a) and 10(b).

.

.
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TABLE I

l\ I?

u o 0.1 0.2 0.3 0.4

0 0 0.1 0.2 0.3 0.4

I 0.1 [ I.000 [0.331 I0.3769( 0.446 I o.5215

I 0.2 I 1.003 I0.576 I 0.5585 I0.590 I0.6375

I 0.3 I 1.00010.756 IO.~ I0.716 I 0.741

I 0.4 I 1.000 I0.8675j0.825 I0.8165I 0.826

I 0.5 I 1.002 I0.931 IO.~ I0.890 I0.891

0.6 1“000 0.% 0.9’475 0 ● 939 0.938
1 1 1 I I

0.7 local 0.9!35 0.975 0.970 0.959

0.8 l.oa) o.% 0.9915 0.9985 0.988

0.9 l.m 0.9985 0.99 0.99’75 0.9972

I 1.0 I 1.000 I 1.000 I 1.CCO I 1.030 ] 1.CCQ

I
0.5 \0.6 I0.7 I 0.8 I 0.9 I1.0 I

0.5 0.6 0.7 0.8 ‘ 0.9 1.000

0.599 0.678 0.758 o.8y3 0.919 1.000

I0.6925 0.750 I0.8M. I 0.8T4 I 0.936 I1.000 I

0.8445 0.870 0.899 0.931 0.965 1.000

=-k-=-L*”a! 0“93 I ‘“m 11“0001
0.9415 I0.949 I0.%8 I 0.970 I 0.995 I1.000 [

0.9’-(0 0.973 0.97’7 0.984 0.9915 1.000
# I 1 I 1 I

0.9!3$ 0.9!385 0.99 0.993 0.996 1.000
I 1 1

0.597 o.g9~ 0.998 0.9985 O.m 1.000

1.000 1.CQO 1.000 1.000 1.000 l.m

s!
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0.8
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1.0

0 0.1

o.&6(6) I0.68k0

=4=
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1.CDOO 0.7930

1.0000 0.8686

100000 0.9170

1.0000 I1.0000

0.2 I 0.3

0.7030 0.7235

o.T@61 0.7768

d=
0.8375 0.8zI0

0.888CI 0.8760

0.9285\O.glao

o.g600 I 0.520

*

0.979 O.mo

0.9910 o.g8g4

O.ggn O.*

l.cxx!a I 1.0000

I I I I I I

o.k 0.5 0.6 0.7 0.8 0.9 l.co

0.7460 o.~20 0.8015 0.8355 0.8770 0.9270 1.0000
I 1 i I 1 1

O.nm O.*S 0.8125 0.8460 0.8840 o.$?2xl l.ooca
, t , 1 I

0.7890 I0.8092 I0.8350 I0.8650 I 0.$)008I O.~ I1.00CKI

0.8315 0.8470 0.8655 0.8903 o.%!cm 0.5565 1.0000

0.8760 0.8840 0.8970 0.9164 0.9403 0.96435 1.0000

0.9170 0.9214 0.9290 0.9412 0.5560 0.9765 I.mo
, , , 1 1

0“9s5 o~%~ 0.9550 O**22 0.9720 0.9850 1.0000

0.9725 O*97ti 0.9750 0.979 O.* o.9915 1*0000

O.mo O.*O 0.9850 0.9910 0.9935 0.9$65 l.mal

0.9!335 0.9%0 o ● 99s5 0.9990 0.9995 0.9990 l.o~o
, 1 1 1 ! I

; 1.0000 I.com 1*0000 1.OCKKJ 1.0000 l.m I.@oo
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Figure l.- 131finitesil?lel

z‘1

elanent of a flow vein.

J

*

.

.

.

Figure 2.- A flow vein in gravitational field. —

.
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Figure 3.-

+

Illustrative di.agrmnof jet syphon.

Figure 4.- Arbitrarily shaped mixing zone of set.

*
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./ .3 .4 .5 .6 .7 a

~,= ~dq+ U@
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GraphicsL representation of injector efficiency as
with conventional formula.

computed

.

.

.

*
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Figure 6.- A case of injector efficiency as computed according to new
theory.
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l?igure7.- Illustrative disgrem of ejactor tmst gn~r~

Figure 8.- Illustrativedisgrsm of constsnt-pressureejectorthrust
augmenter.

—

.

*

.- .

.
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Figure 9.- Graph for efficiency end thrust of constsnt-pressure ejector
thrust au~nter.
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(a) Variation of al‘lao, 5, snd

Figure 10.- Dimensionless characteristicsof
thrust augmenter.
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(b) Variation of A2/Ao2 end b with x.

Fi~e 10.- Concluded.
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